MASTER GENIE MECANIQUE PARCOURS CALCUL EN AERONAUTIQUE

Durée totale de la formation : 550h en master 1 + 425h en master 2

1ère année: 550 heures d'enseignement

Nom de l'UE	ECTS	Disciplines	Compétences attendues	Heures
Langue	3	Anglais	Appréhender l'importance et les enjeux de l'anglophonie pour les scientifiques.	24
Modélisation des systèmes d'information	3	Python / UML	Développer des applications autonomes ou intégrées pour accélérer les processus de développements	30
Aéronautique	3	Aérodynamique	Approfondir la culture aéronautique au niveau de l'aérodynamique, de la mécanique du vol et des systèmes de propulsion.	36
Mécanique	3	Cinématique, cinétique, dynamique	Etudier et modéliser des ensembles mécaniques, afin d'obtenir les équations du mouvement ainsi que les efforts de liaison	30
Conception	3	Conception mécanique	Etudier des solutions technologiques et leur mise en œuvre dans le cadre de la réponse à un appel d'offre émanant d'un donneur d'ordre	30
Gestion de projet	3	Gestion de production, Gestion de projet	Construire et suivre un projet avec prise en compte de risques associés aux activités Etudier la mise en situation de gestion de projet et gestion de cycle de développement produit.	30
Qualité	3	Qualité	Etude des normes et des outils de mise en œuvre de la qualité	24
Fabrication additive composites	3	Matériaux composites et plastiques	Connaître les matériaux polymères et composites fibreux, depuis leur structure physico-chimique jusqu'à leurs propriétés mécaniques. Etudier la mise en œuvre de pièces obtenues en fabrication additive par dépôt de fil polymère	30
Dynamique des structures	3	Vibrations	Appréhender la notion de modes et fréquences propres pour les systèmes discrets linéaires et les milieux continus de type « poutre ».	32
MEF	3	Méthodes des éléments finis	Etude des éléments finis dans un environnement logiciel	30

TER	3	TER	Mettre en application les savoirs fondamentaux au travers de projets techniques encadrés sur une longue période	1h par étudiant
Thermique	3	Thermique	Etudier le comportement des structures sous l'action conjuguée d'un chargement thermique et d'un chargement mécanique	20
Outils métier	6	Outils métier	Mettre en pratique sous forme de macros écrites en VBA dans Excel les diverses méthodes de calcul de composants d'avion vues en cours de structures minces	74
Fatigue rupture	3	Fatigue rupture	Connaître les modes de ruine des structures et avoir des premières notions du comportement des matériaux hors domaine élastique. Les notions de fatigue et mécanique linéaire élastique de la rupture sont également introduites.	28
Structures minces	6	Structures minces	Après avoir étudié le comportement des poutres et introduit le calcul des composites, l'objectif est d'aborder le calcul (qui sera poursuivi en 2° année) des différents composants d'un avion.	70
MEF	3	MEF	Approfondir la connaissance théorique de la méthode et poursuivre l'apprentissage d'un code de calcul au travers de projets encadrés.	32
Optimisation topologique	3	Optimisation topologique	Dimensionner et fabriquer une structure de manière optimale	24
Outils numériques	3	Outils numériques	Savoir appréhender la problématique numérique en lien avec les dimensions mathématiques et physiques des problèmes de l'ingénieur. Mettre en œuvre cette approche dans les domaines de l'optimisation, de la résolution d'équations différentielles, de l'intégration, etc	30

$2^{\rm ème}$ année : 425 heures d'enseignement

Nom de l'UE	ECTS	Disciplines	Compétences attendues	Heures
Langues	3	Anglais	Poursuivre l'apprentissage de l'anglais.	24
SHS	3	Sciences humaines	Apprendre les techniques de communication. Renforcer la connaissance de l'entreprise	30

Structures avion	6	Structures avion	Poursuivre le calcul (abordé en 1°année) des différents composants d'un avion par des méthodes analytiques.	58
Non linéaire	6	Non linéaire	Apprendre à reconnaître et à traiter un problème de mécanique non linéaire. Utilisation de la méthode des éléments finis dans ce cadre et présentation/programmation des principaux algorithmes utilisés.	60
Impact	6	Impact	Maîtriser les fondamentaux du calcul explicite et mise en pratique d'un cas réel sur un code industriel.	60
Fatigue Rupture	6	Fatigue Rupture	Approfondir les notions de fatigue et mécanique de la rupture afin d'être en mesure de réaliser des calculs de durée de vie fatigue et des calculs de tolérance aux dommages sur des structures aéronautiques métalliques.	56
MEF Expert	6	MEF Expert	Finaliser l'approfondissement de la connaissance théorique de la méthode et de l'apprentissage d'un code de calcul au travers de projets encadrés.	74
Composites	6	Composites	Maîtriser la conception et le dimensionnement de structures composites. Application à des éléments d'avion.	60

Le travail en entreprise donnera lieu à un rapport et une soutenance pour 18 ECTS.